

Ceckaltaev A.

«14» August 2019 y.

#### SILLABUS

GEN1603 « Finite element method in engineering»

3 (1/1/1) Credits

Semester: Autumn, 2019-2020 Academic year For specialty 5B071200- Mechanical engineering

Almaty, 2019

Силлабус Сатпаев Университет

Силлабус Сатпаев Университет

### Satpayev University Institute of Cybernetics and Information Technology Department of Applied Mechanics and Engineering Graphics

## 1. Information about teachers:

Lecturer Naurushev B.K. Office hours: Fr 11:05 – 11:55, room 905 MEB Email: <u>batyr\_n@mail.ru</u>

Teacher (practical lessons) Naurushev B.K. Office hours: Fr 12:10 – 13:00 room 905 MEB Email: <u>batyr\_n@mail.ru</u> Teacher (laboratory lessons) Naurushev B.K. Office hours: Fr 13:15 – 14:05, room 905 MEB Email: batyr\_n@mail.ru

2. <u>Course Objective:</u> teaching the future engineer the basics of applying the finite element method (FEM) in engineering when designing engineering products, structures, mechanisms, machines, preparing him for the right choice of calculation and design methods, getting acquainted with the latest achievements of science and technology in the field of computer-aided design and engineering (CAD,CAE), mechanics of a continuous deformable body, in the development of students' logical thinking, communicative skills, self-thinking skills, teamwork skills necessary in further work in solving certain problems of science and technology.

3. <u>Course Description</u>: Designing machine parts, mechanisms, structural elements and assemblies used in engineering practice both analytically and numerically using the finite element method (FEM).

# 4. Prerequisites:

- ✓ <u>Mathematics</u>
- ✓ <u>Theoretical mechanics</u>
- ✓ <u>Strength of materials</u>

# 5. Post-requisitioning:

✓ Diploma work

# 6. <u>References:</u>

| Basic Literature                                  | Additional literature                    |
|---------------------------------------------------|------------------------------------------|
| [1] Singiresu S. Rao, The Finite Element          | [4] Шелофаст В.В. Основы                 |
| Method in Engineering, 6 <sup>th</sup> Edition,   | проектирования машин. – М.: издат-во     |
| Butterworth-Heinemann press, 782 p., 2018         | АПМ., 2015 – 472 с.                      |
| [2] Замрий А.А. Проектирование и расчет           | [5] Кунву Ли. Основы САПР                |
| методом конечных элементов трехмерных             | (САД/САМ/САЕ). – СПб.: Питер, 2014. –    |
| конструкций в среде APM Structure 3D. – М.:       | 560 c.                                   |
| Издательство АПМ. 2015. – 288 с.                  |                                          |
| [3] P. Solin, K. Segeth, I. Dolezel: Higher-Order | [6] Шелофаст В.В., Чугунова Т.Б. Основы  |
| Finite Element Methods, Chapman & Hall/CRC        | проектирования машин. Примеры            |
| Press, 2003                                       | решения задач. – М.: издат-во АПМ., 2015 |
|                                                   | -240 c.                                  |

# 7. <u>Calendar - thematic plan:</u>

| week | Theme of the<br>lecture                                                                                                     | Theme of<br>practical work                                                                                                                                                                                                                  | Theme of laboratory<br>work                                                                                                                                                 | Refere<br>nce to<br>literat<br>ure        | The task                                                               | Deadline |
|------|-----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|------------------------------------------------------------------------|----------|
| 1    | Introduction The<br>main idea of the<br>finite element<br>method.                                                           | Creating a design<br>model of the bar<br>structure.                                                                                                                                                                                         | Static calculation of<br>the rods model of the<br>structure and analysis<br>of the results.                                                                                 | [1]<br>Chapte<br>r 1, pp.<br>11-35        |                                                                        |          |
| 2    | General concepts<br>of computer aided<br>design. General<br>scheme of the<br>FEM algorithm.                                 | Additional<br>functionality of<br>the program<br>module for<br>creating rod<br>models of<br>structures.                                                                                                                                     | Creation and<br>calculation of the rod-<br>plate model of the<br>structure.                                                                                                 | [1]<br>Chapte<br>r 2, pp.<br>36-53        | Design<br>of the<br>rod<br>structure<br>(truss).                       | 4th week |
| 3    | Compilation of<br>the stiffness<br>matrix of a single<br>finite element.                                                    | Preparation of the<br>rods model of the<br>structure for<br>calculation.<br>Setting material<br>parameters.<br>Defining cross<br>sections.<br>Assignment of<br>supports.<br>Assignment of<br>external loads<br>acting on model<br>elements. | The action of loads on<br>the nodes of the<br>design model. Special<br>cases of applying<br>loads to the rod<br>members. The action<br>of loads on plate<br>elements.       | [1]<br>Chapte<br>r 2, pp.<br>54-67        |                                                                        |          |
| 4    | Formation of the<br>global stiffness<br>matrix of the<br>entire area and the<br>nodal force<br>vector.                      | The modes of<br>splitting plates.<br>Setting plate<br>parameters and<br>their loading.                                                                                                                                                      | Calculation of<br>machine elements on<br>for bending.                                                                                                                       | [1]<br>Chapte<br>r 2, pp.<br>68-77        | Design<br>of the<br>construct<br>ion of<br>bus stop.                   | 6th week |
| 5    | Solution of the<br>system stiffness<br>matrix - a system<br>of linear algebraic<br>equations for<br>nodal<br>displacements. | Visualization of<br>the results of the<br>calculation of the<br>rod-plate model of<br>the structure.                                                                                                                                        |                                                                                                                                                                             | [1]<br>Chapte<br>r 2, pp.<br>92-102       |                                                                        |          |
| 6    | Calculation of the<br>desired strains and<br>stresses in the<br>element                                                     | Introduction to the<br>design model of<br>concentrated<br>masses and<br>moments of<br>inertia. An<br>eccentric<br>connection of the<br>rod elements of                                                                                      | Cross-sectional<br>selection of structural<br>elements.<br>Pressure on<br>volumetric elements<br>of the model. The<br>effect of loads on the<br>entire model as a<br>whole. | [1],<br>Chapte<br>r 2, pp.<br>111-<br>136 | The<br>calculati<br>on of the<br>span of<br>the<br>bridge<br>structure | 8th week |

|    |                                                                                                         |                                                                                                                                     |                                                                                                                                                          |                                               | r                                                                                                        | []        |
|----|---------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|----------------------------------------------------------------------------------------------------------|-----------|
|    |                                                                                                         | the design model.<br>The task of elastic<br>ties. Assignment<br>of joint movement<br>of structural<br>model elements.               |                                                                                                                                                          |                                               |                                                                                                          |           |
| 7  | Advantages and<br>disadvantages of<br>the finite element<br>method.                                     | Creation and<br>calculation of<br>models of<br>structures<br>containing plate<br>and volume finite<br>elements.                     | Dynamic load<br>modeling. Checking<br>the bearing capacity of<br>the core elements of<br>the structural model<br>and the selection of<br>cross sections. | [1]<br>Chapte<br>r 2,<br>pages<br>137-<br>151 | Control<br>work                                                                                          | 7th week  |
| 8  | Advantages and<br>disadvantages of<br>the finite element<br>method.                                     | Creation and<br>calculation of<br>models of<br>structures<br>containing plate<br>and volume finite<br>elements.                     | Dynamic load<br>modeling. Checking<br>the bearing capacity of<br>the core elements of<br>the structural model<br>and the selection of<br>cross sections. | [1]<br>Chapte<br>r 2,<br>pages<br>137-<br>151 |                                                                                                          | 8th week  |
| 9  | Discretization of<br>the area. Types<br>(types) of finite<br>elements. One-<br>dimensional<br>elements. | Midter<br>Using a 3D<br>preprocessor to<br>create, load and<br>generate a finite<br>element mesh of<br>three-dimensional<br>models. | m<br>The solution of plane<br>problems of the theory of<br>elasticity using the finite<br>element method.                                                | [1]<br>Chapte<br>r 4, pp.<br>204-<br>239      | Calculati<br>on of<br>metal<br>hangar.                                                                   | 10th week |
| 10 | Types of the finite<br>element. Two-<br>dimensional<br>elements.<br>Three-<br>dimensional<br>elements.  | Shell models.<br>Creation and<br>calculation of<br>models of<br>structures<br>containing<br>volumetric finite<br>elements.          | Stiffness matrix of a<br>triangular finite element                                                                                                       | [1]<br>Chapte<br>r 4, pp.<br>256-<br>275      |                                                                                                          |           |
| 11 | Division of the<br>area into<br>elements. Node<br>Numbering.                                            | Three-<br>dimensional editor<br>for creating,<br>importing and<br>splitting models<br>into finite<br>elements.                      | Stiffness matrix for a<br>triangular finite element.                                                                                                     | [1]<br>Chapte<br>r 6, pp.<br>282-<br>317      | on of the<br>stress-<br>strain<br>state of<br>the coil<br>model,<br>using<br>shells<br>when<br>creating. | 12th week |
| 12 | Calculation of<br>core systems<br>according to the<br>FEM.                                              | Calculation of the structural model for stability.                                                                                  | Nonlinear calculation.<br>Calculation of natural<br>frequencies and natural<br>forms. Calculation of                                                     | [1],<br>Chapte<br>r 7.8,                      | Calculati<br>on of the<br>stress-                                                                        | 14th week |

|    | The stiffness       | Deformation                     | forced vibrations of a               | nn          | strain    | []        |  |  |  |  |
|----|---------------------|---------------------------------|--------------------------------------|-------------|-----------|-----------|--|--|--|--|
|    | matrix of an        | calculation.                    | design model.                        | рр.<br>320- | state of  |           |  |  |  |  |
|    | individual bar in   | calculation.                    | design model.                        |             |           |           |  |  |  |  |
|    | the local           |                                 |                                      | 400         | the       |           |  |  |  |  |
|    | coordinate system   |                                 |                                      |             | wrench,   |           |  |  |  |  |
|    | associated with     |                                 |                                      |             | when      |           |  |  |  |  |
|    | the bar. Table of   |                                 |                                      |             | creating  |           |  |  |  |  |
|    | reactions of an     |                                 |                                      |             | a model   |           |  |  |  |  |
|    | individual rod.     |                                 |                                      |             | to use    |           |  |  |  |  |
|    |                     |                                 |                                      |             | arrays of |           |  |  |  |  |
|    | ~                   | ~ .                             |                                      |             | bodies.   |           |  |  |  |  |
|    | Stiffness matrix of | -                               | Thermal calculation and              |             |           |           |  |  |  |  |
|    | the rod in the      | a volume                        | solution of the problem              | Chapte      |           |           |  |  |  |  |
|    | general coordinate  | -                               | of thermoelasticity.                 | r 10,       |           |           |  |  |  |  |
|    | system.             | solid-state                     |                                      | pp.401-     |           |           |  |  |  |  |
| 13 |                     | model and                       |                                      | 407         |           |           |  |  |  |  |
|    |                     | setting the loads acting on it. |                                      |             |           |           |  |  |  |  |
|    |                     | Generation of                   |                                      |             |           |           |  |  |  |  |
|    |                     | finite element                  |                                      |             |           |           |  |  |  |  |
|    |                     | mesh.                           |                                      |             |           |           |  |  |  |  |
|    | Compilation of a    | Example                         | Source data                          | [1],        | Control   | 14th week |  |  |  |  |
|    | stiffness matrix    | calculation                     | preparation.                         | Chapte      | work      |           |  |  |  |  |
|    | for the entire      | software rod                    | Determination of                     | r 10,       |           |           |  |  |  |  |
| 14 | structure.          | system on a                     | internal forces in each              | pp.         |           |           |  |  |  |  |
| 14 |                     | computer.                       | individual rod based                 | 408-        |           |           |  |  |  |  |
|    |                     |                                 | on the known                         | 415         |           |           |  |  |  |  |
|    |                     |                                 | movements of the                     |             |           |           |  |  |  |  |
|    |                     |                                 | units of the structure.              |             |           |           |  |  |  |  |
|    | Compilation of a    | Example                         | Source data                          | [1],        |           |           |  |  |  |  |
|    | stiffness matrix    | calculation                     | preparation.                         | Chapte      |           |           |  |  |  |  |
|    | for the entire      | software rod                    | Determination of                     | r 10,       |           |           |  |  |  |  |
| 15 | structure.          | system on a                     | internal forces in each              | pp.         |           | 15th      |  |  |  |  |
| 15 |                     | computer.                       | individual rod based<br>on the known | 408-<br>415 |           | 15th week |  |  |  |  |
|    |                     |                                 | movements of the                     | 415         |           |           |  |  |  |  |
|    |                     |                                 | units of the structure.              |             |           |           |  |  |  |  |
|    |                     | End Term                        | units of the structure.              |             |           |           |  |  |  |  |
|    |                     | Exam                            |                                      |             |           |           |  |  |  |  |
| L  |                     |                                 |                                      |             |           |           |  |  |  |  |

\* The calendar - a thematic calendar is subject to change based on holidays Schedule of delivery of required work

|        | Schedule of delivery of required work |        |   |       |   |   |   |   |   |   |   |    |    |    |    |    |    |        |
|--------|---------------------------------------|--------|---|-------|---|---|---|---|---|---|---|----|----|----|----|----|----|--------|
| N⁰     | Types of control                      | Max    |   | Weeks |   |   |   |   |   |   |   |    |    |    |    |    |    |        |
| $\Pi/$ |                                       | point  | 1 | 2     | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | Total  |
| П      |                                       | of the |   |       |   |   |   |   |   |   |   |    |    |    |    |    |    | max    |
|        |                                       | week   |   |       |   |   |   |   |   |   |   |    |    |    |    |    |    | points |
| 1      | Activity in lecture                   | 0,1    |   | *     | * | * | * | * | * |   | * | *  | *  | *  | *  | *  |    | 1,2    |
|        | discussions                           |        |   |       |   |   |   |   |   |   |   |    |    |    |    |    |    |        |
| 2      | Activity in practical                 | 0,23   |   | *     | * | * | * | * | * |   | * | *  | *  | *  | *  | *  |    | 2,8    |
|        | classes                               |        |   |       |   |   |   |   |   |   |   |    |    |    |    |    |    |        |
| 3      | Laboratory works                      | 0,5    |   |       |   | * |   |   |   | * |   |    |    | *  |    |    | *  | 2      |
| 3      | Test papers                           | 2      |   |       |   |   |   |   | * |   |   |    |    |    |    | *  |    | 4      |
| 4      | IWS                                   | 5      |   |       |   | * |   | * |   | * |   | *  |    | *  |    | *  |    | 30     |
| _      |                                       |        |   | •     | • | • | • | • | • | • |   | •  | •  |    | •  | •  |    |        |

Силлабус

Сатпаев Университет

| 5 | Midterm      | 10,0 |  |  |  | * |  |  |  |   | 10  |
|---|--------------|------|--|--|--|---|--|--|--|---|-----|
| 6 | Endterm      | 10,0 |  |  |  |   |  |  |  | * | 10  |
|   | Exam         | 40   |  |  |  |   |  |  |  |   | 40  |
|   | Total amount |      |  |  |  |   |  |  |  |   | 100 |

#### 8. Tasks and brief guidelines for their implementation:

#### ✓ Independent work of the student (IWS):

Semester task 1. Designing the structure of the rods (trusses).

Semester task 2. Design of the construction of bus stop..

Semester task 3. The calculation of the span of the bridge structure.

Semester task 4. Calculation of metal hangar.

Semester task 5. Calculation of the stress-strain state of the coil model, when using shells.

Semester task 6. Calculation of the stress-strain state of the wrench, when creating a model to use arrays of bodies.

### ✓ Work with the teacher (WWT):

Test work 1. Theme: Selection of the cross-section of structural elements operating in bending. Test work 2. Theme: Calculation of a composite beam in a local coordinate system.

### ✓ Practical work:

Practical lesson №1 Creating a design model of the bar structure.

Practical lesson №2 Additional functionality of the program module for creating rod models of structures..

Practical lesson №3 Preparation of the rods model of the structure for calculation. Setting material parameters. Defining cross sections. Assignment of supports. Assignment of external loads acting on model elements..

Practical lesson №4 The modes of splitting plates. Setting plate parameters and their loading.

Practical lesson №5 Visualization of the results of the calculation of the rod-plate model of the structure.

Practical lesson №6 Introduction to the design model of concentrated masses and moments of inertia. An eccentric connection of the rod elements of the design model. The task of elastic ties. Assignment of joint movement of structural model elements.

Practical lesson №7 Creation and calculation of models of structures containing plate and volume finite elements.

Practical lesson №8 Creation and calculation of models of structures containing plate and volume finite elements.

Practical lesson №9 Using a 3D preprocessor to create, load and generate a finite element mesh of three-dimensional models..

Practical lesson №10 Shell models. Creation and calculation of models of structures containing volumetric finite elements..

Practical lesson №11 Three-dimensional editor for creating, importing and splitting models into finite elements..

Practical lesson №12 Calculation of the structural model for stability. Deformation calculation..

Practical lesson №13 Create or import a volume model. Fixing a solid-state model and setting

the loads acting on it. Generation of finite element mesh.

Practical lesson №14 Calculation software rod system on a computer.

Practical lesson №15 Example calculation software rod system on a computer.

### ✓ Laboratory work:

Laboratory work №1 Static calculation of the rods model of the structure and analysis of the results..

Laboratory work №2 Creation and calculation of the rod-plate model of the structure..

Силлабус

Сатпаев Университет

Laboratory work  $N_2$  The action of loads on the nodes of the design model. Special cases of applying loads to the rod members. The action of loads on plate elements..

Laboratory work №4 Calculation of machine elements on for bending.

Laboratory work №5 Calculation of machine elements on for displacement.

Laboratory work No6 Cross-sectional selection of structural elements.

Pressure on volumetric elements of the model. The effect of loads on the entire model as a whole..

Laboratory work №7 Dynamic load modeling. Checking the bearing capacity of the core elements of the structural model and the selection of cross sections.

Laboratory work №8 Checking the bearing capacity of the core elements of the structural model and the selection of cross sections.

Laboratory work №9 The solution of plane problems of the theory of elasticity using the finite element method.

Laboratory work №10 Stiffness matrix of a triangular finite element.

Laboratory work №11 Stiffness matrix for a triangular finite element.

Laboratory work №12 Nonlinear calculation. Calculation of natural frequencies and natural forms. Calculation of forced vibrations of a design model.

Laboratory work №13 Thermal calculation and solution of the problem of thermoelasticity.

Laboratory work №14 Source data preparation. Determination of internal forces in each individual rod based on the known movements of the units of the structure.

Laboratory work №15 Determination of internal forces in each individual rod based on the known movements of the units of the structure.

✓ Midterm:

They represent an independent solution of tasks on the topics covered under the guidance of the teacher. Tasks will be presented during office hours. They are compulsory for all students, like the current independent work. When performing tests, you must use the knowledge obtained from textbooks and exercises.

### ✓ Exam:

The exam covers and summarizes the entire course material. The exam is conducted in writing and covers various types of assignments: theory questions, covering the lecture material covered, practical solution of specific problems. The duration of the exam is 2 academic hours.

| Evaluation<br>by letter<br>system | Digital<br>equivalent<br>of<br>evaluation | Criterions                                                        |
|-----------------------------------|-------------------------------------------|-------------------------------------------------------------------|
| Α                                 | 95 – 100                                  | Correctness and completeness of answers and solving problems,     |
|                                   |                                           | accuracy and accuracy of presentation, calculation and timely     |
|                                   |                                           | delivery, presentability and communicative protection.            |
| A -                               | <b>90 - 94</b>                            | Correctness and completeness of answers and problem solving.      |
|                                   |                                           | Timely delivery, presentable and communicative on protection.     |
| <b>B</b> +                        | <b>85 - 89</b>                            | Correctness and completeness of answers and problem solving.      |
|                                   |                                           | Timely delivery, presentable and communicative on protection.     |
|                                   |                                           | But inaccurate in the design of work.                             |
| В                                 | 80 - 84                                   | Correctness and completeness of answers and problem solving.      |
|                                   |                                           | Timely delivery, presentable and communicative on protection.     |
|                                   |                                           | But minor errors in mathematical calculations are allowed.        |
| В-                                | 75 – 79                                   | Correctness and completeness of answers and problem solving.      |
| C +                               | 70 - 74                                   | The work was completed in full. There are gaps in the theoretical |
|                                   |                                           | material.                                                         |
| С                                 | 65 - 69                                   | The work was completed in full. There are errors in the           |

### 9. Criteria for evaluation of works:

Силлабус Сатпаев Университет

|            |         | calculations, gaps in the theoretical material.                   |
|------------|---------|-------------------------------------------------------------------|
| С -        | 60 - 64 | The work was completed in full. There are errors in the           |
|            |         | calculations, gaps in the theoretical material. Ignorance of the  |
|            |         | methodology of the work. The answer is not given.                 |
| <b>D</b> + | 55 - 59 | The work was done in incomplete volume. Some correct              |
|            |         | necessary formulas or theoretical calculations or laws are given. |
|            |         | A partial solution is given.                                      |
| D          | 50 - 54 | The work was done in incomplete volume. Some correct              |
|            |         | necessary formulas or theoretical calculations or laws are given. |
|            |         | There is no complete solution.                                    |
| F          | 0 - 49  | Not done. Absence without good reason.                            |

\* It is possible to receive bonus points for additional tasks

### 10. Policy for late performance of works:

It requires timely and full implementation of all types of work. Tasks must be performed in writing and handed over as soon as the deadline is reached. Timeliness of performance and delivery of works will be taken into account. The reduction of the maximum score by 10% is envisaged for inactivated work. If you do not keep within the calendar deadlines for the delivery of work for valid reasons, you must notify the teacher in advance of the deadline for the submission of work.

# **11. Attendance Policy:**

Visiting lecture, laboratory and practical classes is mandatory and is one of the components of your final score / evaluation. Skipping classes can affect your academic performance and final grade. Each two delays and / or departures before the end of the lesson for any reason will be considered as one *missed classes*. However, attending classes in itself does not mean an increase in scores. You need your constant active participation in the class. An obligatory requirement of the course is preparation for each lesson. It is necessary to review the indicated sections of the textbook and additional material not only in preparation for practical classes, but also before attending a relevant lecture. Such training will facilitate the perception of new material by you and will help your active acquisition of knowledge within the university. Students who missed 20% of classes are not allowed to take exams and receive a final rating of "F".

### 12. Assessment of knowledge:

7.11.1 Grade "F" is given to the student:

- in case of missing more than 20% of the total number of classroom activities in the discipline, with the exception of cases provided for in clause 7.11.3;

- if the student scored less than 25 points during the semester (0-24 points);

- in the event of the fact of non-independent performance of the final control (exam), including the use of prohibited means and other violations by the student of the Rules of conduct in the exam;

- in the event that the assessment of the final control (exam) is less than 10 points;

- in case of failure to appear for the exam without a good reason.

- if the student was unable to confirm the total threshold level of 50 or more points during the retake of the exam of FX assessment

7.11.2. The grade "FX" is given to the student if the student scored a total of at least 25 points during the semester, but could not confirm the total threshold level of 50 or more points in the exam.

7.11.3. The examiner has the right to admit to the exam a student who has more than 20%, but less than 30% of admissions in case of his positive certification and active work in the academic period, for which he must send a notice to the PR agreed with the department and the institute in the prescribed manner.

7.11.4 When the fact of non-independent performance of the final control or the presence of a student's cheat sheet, as well as in other cases, when a student violates the Rules of conduct in the exam (cheating, using electronic means of communication, etc.), the student is removed from the exam. At the same time, the student is given the final grade "F" in discipline, regardless of the number of points scored by him during the semester

### Силлабус

Сатпаев Университет

#### 13. Policy of academic behavior and ethics:

Be tolerant, respect someone else's opinion. Objections formulate in the correct form. Plagiarism and other forms of dishonest work are unacceptable. It is unacceptable to hint and cheat during the exams, passing the exam for another student. A student who is found to falsify any course information will receive a final rating of "F".

Considered at a meeting of the department Applied Mechanics and Engineering Graphics, protocol №1, August 12, 2019

prices

Compiled by: Lector

Naurushev B.